
Appendix B

Simple matrices

Mathematicians also attempted to develop algebra of vectors but
there was no natural definition of the product of two vectors
that held in arbitrary dimensions. The first vector algebra that
involved a noncommutative vector product (that is, v×w need not
equal w×v) was proposed by Hermann Grassmann in his book
Ausdehnungslehre (1844). Grassmann’s text also introduced the
product of a column matrix and a row matrix, which resulted in
what is now called a simple or a rank-one matrix. In the late
19th century the American mathematical physicist Willard Gibbs
published his famous treatise on vector analysis. In that treatise
Gibbs represented general matrices, which he called dyadics, as
sums of simple matrices, which Gibbs called dyads. Later the
physicist P. A. M. Dirac introduced the term “bra-ket” for what
we now call the scalar product of a “bra” (row) vector times a
“ket” (column) vector and the term “ket-bra” for the product of a
ket times a bra, resulting in what we now call a simple matrix, as
above. Our convention of identifying column matrices and vectors
was introduced by physicists in the 20th century.

−Marie A. Vitulli [251]
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494 APPENDIX B. SIMPLE MATRICES

B.1 Rank-one matrix (dyad)

Any matrix formed from the unsigned outer product of two vectors,

Ψ = uvT ∈ RM×N (1236)

where u∈RM and v ∈RN , is rank-one and called a dyad. Conversely, any
rank-one matrix must have the form Ψ . [133, prob.1.4.1] The product −uvT

is a negative dyad. For matrix products ABT , in general, we have

R(ABT ) ⊆ R(A) , N (ABT ) ⊇ N (BT ) (1237)

with equality when B = A [223, §3.3, §3.6]B.1 or respectively when B is
invertible and N (A)=0. Yet for all nonzero dyads we have

R(uvT ) = R(u) , N (uvT ) = N (vT ) ≡ v⊥ (1238)

where dim v⊥=N−1.
It is obvious a dyad can be 0 only when u or v is 0;

Ψ = uvT = 0 ⇔ u = 0 or v = 0 (1239)

The matrix 2-norm for Ψ is equivalent to the Frobenius norm;

‖Ψ‖2 = ‖uvT‖F = ‖uvT‖2 = ‖u‖ ‖v‖ (1240)

When u and v are normalized, the pseudoinverse is the transposed dyad.
Otherwise,

Ψ† = (uvT )† =
vuT

‖u‖2 ‖v‖2
(1241)

When dyad uvT∈RN×N is square, uvT has at least N−1 0-eigenvalues
and corresponding eigenvectors spanning v⊥. The remaining eigenvector u
spans the range of uvT with corresponding eigenvalue

λ = vTu = tr(uvT ) ∈ R (1242)

B.1
Proof. R(AAT ) ⊆ R(A) is obvious.

R(AAT ) = {AAT y | y ∈ Rm}
⊇ {AAT y | ATy ∈ R(AT )} = R(A) by (115) �
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R(v)

N (Ψ)=N (vT )

r r

N (uT )

R(Ψ) = R(u)

RN = R(v) ⊕ N (uvT ) N (uT ) ⊕ R(uvT ) = RM

0 0

Figure 104: The four fundamental subspaces [225, §3.6] of any dyad

Ψ = uvT∈RM×N . Ψ(x)
∆
= uvT x is a linear mapping from RN to RM . The

map from R(v) to R(u) is bijective. [223, §3.1]

The determinant is the product of the eigenvalues; so, it is always true that

det Ψ = det(uvT ) = 0 (1243)

When λ=1, the square dyad is a nonorthogonal projector projecting on its
range (Ψ2 =Ψ , §E.1). It is quite possible that u∈ v⊥ making the remaining
eigenvalue instead 0 ;B.2 λ=0 together with the first N− 1 0-eigenvalues;
id est, it is possible uvT were nonzero while all its eigenvalues are 0. The
matrix

[

1
−1

]

[ 1 1 ]
=

[

1 1
−1 −1

]

(1244)

for example, has two 0-eigenvalues. In other words, the value of eigenvector
u may simultaneously be a member of the nullspace and range of the dyad.
The explanation is, simply, because u and v share the same dimension,
dim u = M = dim v = N :

Proof. Figure 104 shows the four fundamental subspaces for the dyad.
Linear operator Ψ : RN → RM provides a map between vector spaces that
remain distinct when M =N ;

u ∈ R(uvT )

u ∈ N (uvT ) ⇔ vTu = 0

R(uvT ) ∩ N (uvT ) = ∅
(1245)

�

B.2The dyad is not always diagonalizable (§A.5) because the eigenvectors are not
necessarily independent.
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B.1.0.1 rank-one modification

If A∈RN×N is any nonsingular matrix and 1+vTA−1u 6=0, then [145, App.6]
[272, §2.3, prob.16] [89, §4.11.2] (Sherman-Morrison)

(A + uvT )−1 = A−1 − A−1 uvT A−1

1 + vTA−1u
(1246)

B.1.0.2 dyad symmetry

In the specific circumstance that v = u , then uuT ∈ RN×N is symmetric,
rank-one, and positive semidefinite having exactly N−1 0-eigenvalues. In
fact, (Theorem A.3.1.0.7)

uvT � 0 ⇔ v = u (1247)

and the remaining eigenvalue is almost always positive;

λ = uTu = tr(uuT ) > 0 unless u=0 (1248)

The matrix
[

Ψ u
uT 1

]

(1249)

for example, is rank-1 positive semidefinite if and only if Ψ = uuT .

B.1.1 Dyad independence

Now we consider a sum of dyads like (1236) as encountered in diagonalization
and singular value decomposition:

R
(

k
∑

i=1

siw
T
i

)

=
k
∑

i=1

R
(

siw
T
i

)

=
k
∑

i=1

R(si) ⇐ wi ∀ i are l.i. (1250)

range of the summation is the vector sum of ranges.B.3 (Theorem B.1.1.1.1)
Under the assumption the dyads are linearly independent (l.i.), then the
vector sums are unique (p.645): for {wi} l.i. and {si} l.i.

R
(

k
∑

i=1

siw
T
i

)

= R
(

s1w
T
1

)

⊕ . . . ⊕R
(

skw
T
k

)

= R(s1) ⊕ . . . ⊕R(sk) (1251)

B.3Move of range R to inside the summation depends on linear independence of {wi}.
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B.1.1.0.1 Definition. Linearly independent dyads. [139, p.29, thm.11]
[230, p.2] The set of k dyads

{

siw
T
i | i=1 . . . k

}

(1252)

where si∈CM and wi∈CN , is said to be linearly independent iff

rank

(

SW T ∆
=

k
∑

i=1

siw
T
i

)

= k (1253)

where S
∆
= [s1 · · · sk] ∈ CM×k and W

∆
= [w1 · · · wk] ∈ CN×k. △

As defined, dyad independence does not preclude existence of a nullspace
N (SW T ) , nor does it imply SW T is full-rank. In absence of an assumption
of independence, generally, rank SW T ≤ k . Conversely, any rank-k matrix
can be written in the form SW T by singular value decomposition. (§A.6)

B.1.1.0.2 Theorem. Linearly independent (l.i.) dyads.
Vectors {si ∈ CM , i = 1 . . . k} are l.i. and vectors {wi ∈ CN , i = 1 . . . k} are
l.i. if and only if dyads {siw

T
i ∈ CM×N , i=1 . . . k} are l.i. ⋄

Proof. Linear independence of k dyads is identical to definition (1253).

(⇒) Suppose {si} and {wi} are each linearly independent sets. Invoking
Sylvester’s rank inequality, [133, §0.4] [272, §2.4]

rank S+rank W − k ≤ rank(SW T ) ≤ min{rank S , rank W} (≤ k) (1254)

Then k≤ rank(SW T )≤k that implies the dyads are independent.

(⇐) Conversely, suppose rank(SW T )=k . Then

k≤min{rank S , rank W} ≤ k (1255)

implying the vector sets are each independent. �
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B.1.1.1 Biorthogonality condition, Range and Nullspace of Sum

Dyads characterized by a biorthogonality condition W TS = I are
independent; id est, for S∈CM×k and W ∈ CN×k, if W TS = I then
rank(SW T )=k by the linearly independent dyads theorem because
(confer §E.1.1)

W TS = I ⇔ rank S =rankW =k≤M =N (1256)

To see that, we need only show: N (S)=0 ⇔ ∃ B � BS =I .B.4

(⇐) Assume BS =I . Then N (BS)=0={x | BSx = 0} ⊇ N (S). (1237)
(⇒) If N (S)=0 then S must be full-rank skinny-or-square.

∴ ∃ A,B,C �

[

B
C

]

[S A ] = I (id est, [S A ] is invertible) ⇒ BS =I .

Left inverse B is given as W T here. Because of reciprocity with S , it
immediately follows: N (W )=0 ⇔ ∃ S � ST W = I . �

Dyads produced by diagonalization, for example, are independent because
of their inherent biorthogonality. (§A.5.1) The converse is generally false;
id est, linearly independent dyads are not necessarily biorthogonal.

B.1.1.1.1 Theorem. Nullspace and range of dyad sum.
Given a sum of dyads represented by SW T where S∈CM×k and W ∈ CN×k

N (SW T ) = N (W T ) ⇐ ∃ B � BS = I

R(SW T ) = R(S) ⇐ ∃ Z � W TZ = I
(1257)

⋄

Proof. (⇒) N (SW T )⊇N (W T ) and R(SW T )⊆R(S) are obvious.
(⇐) Assume the existence of a left inverse B∈Rk×N and a right inverse
Z∈ RN×k .B.5

N (SW T ) = {x | SW Tx = 0} ⊆ {x | BSW Tx = 0} = N (W T ) (1258)

R(SW T ) = {SW Tx | x∈RN} ⊇ {SW TZy | Zy∈RN} = R(S) (1259)

�

B.4Left inverse is not unique, in general.
B.5By counter example, the theorem’s converse cannot be true; e.g., S = W = [1 0 ] .
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R([ u v ])

N (Π)= v⊥ ∩ u⊥

r r

v⊥ ∩ u⊥

R(Π)=R([u v])

RN = R([ u v ]) ⊕ N
([

vT

uT

])

N
([

vT

uT

])

⊕ R([ u v ]) = RN

0 0

Figure 105: Four fundamental subspaces [225, §3.6] of a doublet
Π = uvT + vuT ∈ SN . Π(x) = (uvT + vuT )x is a linear bijective mapping
from R([ u v ]) to R([ u v ]).

B.2 Doublet

Consider a sum of two linearly independent square dyads, one a transposition
of the other:

Π = uvT + vuT =
[u v ]

[

vT

uT

]

= SW T ∈ SN (1260)

where u , v∈RN . Like the dyad, a doublet can be 0 only when u or v is 0;

Π = uvT + vuT = 0 ⇔ u = 0 or v = 0 (1261)

By assumption of independence, a nonzero doublet has two nonzero
eigenvalues

λ1

∆
= uTv + ‖uvT‖ , λ2

∆
= uTv − ‖uvT‖ (1262)

where λ1 > 0 >λ2 , with corresponding eigenvectors

x1

∆
=

u

‖u‖ +
v

‖v‖ , x2

∆
=

u

‖u‖ − v

‖v‖ (1263)

spanning the doublet range. Eigenvalue λ1 cannot be 0 unless u and v have
opposing directions, but that is antithetical since then the dyads would no
longer be independent. Eigenvalue λ2 is 0 if and only if u and v share the
same direction, again antithetical. Generally we have λ1 > 0 and λ2 < 0, so
Π is indefinite.
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N (uT )

N (E)=R(u)

r r

R(v)

R(E) = N (vT )

RN = N (uT ) ⊕ N (E) R(v) ⊕ R(E) = RN

0 0

Figure 106: vTu = 1/ζ . The four fundamental subspaces [225, §3.6] of

elementary matrix E as a linear mapping E(x)=

(

I − uvT

vTu

)

x .

By the nullspace and range of dyad sum theorem, doublet Π has
N−2 zero-eigenvalues remaining and corresponding eigenvectors spanning

N
([

vT

uT

])

. We therefore have

R(Π) = R([ u v ]) , N (Π) = v⊥ ∩ u⊥ (1264)

of respective dimension 2 and N−2.

B.3 Elementary matrix

A matrix of the form
E = I − ζ uvT ∈ RN×N (1265)

where ζ ∈ R is finite and u,v ∈ RN , is called an elementary matrix or a
rank-one modification of the identity. [135] Any elementary matrix in RN×N

has N−1 eigenvalues equal to 1 corresponding to real eigenvectors that
span v⊥. The remaining eigenvalue

λ = 1− ζ vTu (1266)

corresponds to eigenvector u .B.6 From [145, App.7.A.26] the determinant:

det E = 1 − tr
(

ζ uvT
)

= λ (1267)

B.6Elementary matrix E is not always diagonalizable because eigenvector u need not be
independent of the others; id est, u∈ v⊥ is possible.
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If λ 6= 0 then E is invertible; [89]

E−1 = I +
ζ

λ
uvT (1268)

Eigenvectors corresponding to 0 eigenvalues belong to N (E) , and
the number of 0 eigenvalues must be at least dimN (E) which, here,
can be at most one. (§A.7.3.0.1) The nullspace exists, therefore, when
λ=0 ; id est, when vTu=1/ζ , rather, whenever u belongs to the
hyperplane {z∈RN | vTz=1/ζ}. Then (when λ=0) elementary matrix
E is a nonorthogonal projector projecting on its range (E2 =E , §E.1)
and N (E)=R(u) ; eigenvector u spans the nullspace when it exists. By
conservation of dimension, dimR(E)=N−dimN (E). It is apparent from
(1265) that v⊥ ⊆R(E) , but dim v⊥=N−1. Hence R(E)≡ v⊥ when the
nullspace exists, and the remaining eigenvectors span it.

In summary, when a nontrivial nullspace of E exists,

R(E) = N (vT ), N (E) = R(u), vTu = 1/ζ (1269)

illustrated in Figure 106, which is opposite to the assignment of subspaces
for a dyad (Figure 104). Otherwise, R(E)= RN .

When E =ET , the spectral norm is

‖E‖2 = max{1 , |λ|} (1270)

B.3.1 Householder matrix

An elementary matrix is called a Householder matrix when it has the defining
form, for nonzero vector u [95, §5.1.2] [89, §4.10.1] [223, §7.3] [133, §2.2]

H = I − 2
uuT

uTu
∈ SN (1271)

which is a symmetric orthogonal (reflection) matrix (H−1 =HT=H
(§B.5.2)). Vector u is normal to an N−1-dimensional subspace u⊥ through
which this particular H effects pointwise reflection; e.g., Hu⊥ = u⊥ while
Hu =−u .

Matrix H has N − 1 orthonormal eigenvectors spanning that reflecting
subspace u⊥ with corresponding eigenvalues equal to 1. The remaining
eigenvector u has corresponding eigenvalue −1 ; so

det H = −1 (1272)
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Due to symmetry of H , the matrix 2-norm (the spectral norm) is equal to the
largest eigenvalue-magnitude. A Householder matrix is thus characterized,

HT = H , H−1 = HT , ‖H‖2 = 1 , H � 0 (1273)

For example, the permutation matrix

Ξ =





1 0 0
0 0 1
0 1 0



 (1274)

is a Householder matrix having u=[ 0 1 −1 ]T /
√

2 . Not all permutation
matrices are Householder matrices, although all permutation matrices are
orthogonal matrices. [223, §3.4] Neither are all symmetric permutation

matrices Householder matrices; e.g., Ξ =









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









(1356) is not a

Householder matrix.

B.4 Auxiliary V -matrices

B.4.1 Auxiliary projector matrix V

It is convenient to define a matrix V that arises naturally as a consequence of
translating the geometric center αc (§4.5.1.0.1) of some list X to the origin.
In place of X − αc1

T we may write XV as in (548) where

V
∆
= I − 1

N
11T ∈ SN (491)

is an elementary matrix called the geometric centering matrix.
Any elementary matrix in RN×N has N−1 eigenvalues equal to 1. For the

particular elementary matrix V , the N th eigenvalue equals 0. The number
of 0 eigenvalues must equal dimN (V ) = 1, by the 0 eigenvalues theorem
(§A.7.3.0.1), because V =V T is diagonalizable. Because

V 1 = 0 (1275)

the nullspace N (V )=R(1) is spanned by the eigenvector 1. The remaining
eigenvectors span R(V ) ≡ 1⊥ = N (1T ) that has dimension N−1.
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Because
V 2 = V (1276)

and V T = V , elementary matrix V is also a projection matrix (§E.3)
projecting orthogonally on its range N (1T ).

V = I − 1(1T1)−11T (1277)

The {0, 1} eigenvalues also indicate diagonalizable V is a projection matrix.
[272, §4.1, thm.4.1] Symmetry of V denotes orthogonal projection; from
(1519),

V T = V , V † = V , ‖V ‖2 = 1 , V � 0 (1278)

Matrix V is also circulant [103].

B.4.1.0.1 Example. Relationship of auxiliary to Householder matrix.
Let H∈ SN be a Householder matrix (1271) defined by

u =









1
...
1

1 +
√

N









∈ RN (1279)

Then we have [92, §2]

V = H

[

I 0
0T 0

]

H (1280)

Let D∈ SN
h and define

−HDH
∆
= −

[

A b
bT c

]

(1281)

where b is a vector. Then because H is nonsingular (§A.3.1.0.5) [116, §3]

−V DV = −H

[

A 0
0T 0

]

H � 0 ⇔ −A � 0 (1282)

and affine dimension is r = rankA when D is a Euclidean distance matrix.
2
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B.4.2 Schoenberg auxiliary matrix VN

1. VN =
1√
2

[

−1T

I

]

∈ RN×N−1

2. V T
N 1 = 0

3. I − e11
T =

[

0
√

2VN
]

4.
[

0
√

2VN
]

VN = VN

5.
[

0
√

2VN
]

V = V

6. V
[

0
√

2VN
]

=
[

0
√

2VN
]

7.
[

0
√

2VN
] [

0
√

2VN
]

=
[

0
√

2VN
]

8.
[

0
√

2VN
]†

=

[

0 0T

0 I

]

V

9.
[

0
√

2VN
]†

V =
[

0
√

2VN
]†

10.
[

0
√

2VN
] [

0
√

2VN
]†

= V

11.
[

0
√

2VN
]† [

0
√

2VN
]

=

[

0 0T

0 I

]

12.
[

0
√

2VN
]

[

0 0T

0 I

]

=
[

0
√

2VN
]

13.

[

0 0T

0 I

]

[

0
√

2VN
]

=

[

0 0T

0 I

]

14. [ VN
1√
2
1 ]−1 =

[

V †
N

√
2

N
1T

]

15. V †
N =

√
2
[

− 1

N
1 I− 1

N
11T

]

∈ RN−1×N ,
(

I− 1

N
11T ∈ SN−1

)

16. V †
N1 = 0

17. V †
NVN = I
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18. V T = V = VNV †
N = I − 1

N
11T ∈ SN

19. −V †
N (11T − I)VN = I ,

(

11T − I ∈ EDMN
)

20. D = [dij] ∈ SN
h (493)

tr(−V DV ) = tr(−V D) = tr(−V †
NDVN ) = 1

N
1TD 1 = 1

N
tr(11TD) = 1

N

∑

i,j

dij

Any elementary matrix E∈ SN of the particular form

E = k1 I − k2 11T (1283)

where k1 , k2∈R ,B.7 will make tr(−ED) proportional to
∑

dij .

21. D = [dij] ∈ SN

tr(−V DV ) = 1

N

∑

i,j

i6=j

dij − N−1

N

∑

i

dii = 1TD1 1

N
− tr D

22. D = [dij] ∈ SN
h

tr(−V T
NDVN ) =

∑

j

d1j

23. For Y ∈ SN

V (Y − δ(Y 1))V = Y − δ(Y 1)

B.4.3 Orthonormal auxiliary matrix VW

The skinny matrix

VW
∆
=























−1√
N

−1√
N

· · · −1√
N

1 + −1

N+
√

N

−1

N+
√

N
· · · −1

N+
√

N

−1

N+
√

N

. . . . . . −1

N+
√

N

...
. . . . . .

...

−1

N+
√

N

−1

N+
√

N
· · · 1 + −1

N+
√

N























∈ RN×N−1 (1284)

B.7If k1 is 1−ρ while k2 equals −ρ∈R , then all eigenvalues of E for −1/(N−1) < ρ < 1
are guaranteed positive and therefore E is guaranteed positive definite. [200]



506 APPENDIX B. SIMPLE MATRICES

has R(VW)=N (1T ) and orthonormal columns. [4] We defined three
auxiliary V -matrices: V , VN (474), and VW sharing some attributes listed
in Table B.4.4. For example, V can be expressed

V = VWV T
W = VNV †

N (1285)

but V T
WVW = I means V is an orthogonal projector (1516) and

V †
W = V T

W , ‖VW‖2 = 1 , V T
W1 = 0 (1286)

B.4.4 Auxiliary V -matrix Table

dim V rank V R(V ) N (V T ) V T V V V T V V †

V N×N N−1 N (1T ) R(1) V V V

VN N×(N−1) N−1 N (1T ) R(1) 1

2
(I + 11T ) 1

2

[

N−1 −1T

−1 I

]

V

VW N×(N−1) N−1 N (1T ) R(1) I V V

B.4.5 More auxiliary matrices

Mathar shows [171, §2] that any elementary matrix (§B.3) of the form

VM = I − b1T ∈ RN×N (1287)

such that bT1 = 1 (confer [97, §2]), is an auxiliary V -matrix having

R(V T
M) = N (bT ) , R(VM) = N (1T )

N (VM) = R(b) , N (V T
M) = R(1)

(1288)

Given X∈ Rn×N , the choice b= 1

N
1 (VM=V ) minimizes ‖X(I − b1T )‖F .

[99, §3.2.1]
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B.5 Orthogonal matrix

B.5.1 Vector rotation

The property Q−1 = QT completely defines an orthogonal matrix Q∈Rn×n

employed to effect vector rotation; [223, §2.6, §3.4] [225, §6.5] [133, §2.1] for
x ∈ Rn

‖Qx‖ = ‖x‖ (1289)

The orthogonal matrix is characterized:

Q−1 = QT , ‖Q‖2 = 1 (1290)

Applying characterization (1290) to QT we see it too is an orthogonal matrix.
Hence the rows and columns of Q respectively form an orthonormal set.

All permutation matrices Ξ , for example, are orthogonal matrices. The
largest magnitude entry of any orthogonal matrix is 1; for each and every
j∈ 1 . . . n

‖Q(j , :)‖∞ ≤ 1
‖Q(: , j)‖∞ ≤ 1

(1291)

Each and every eigenvalue of a (real) orthogonal matrix has magnitude 1

λ(Q) ∈ Cn , |λ(Q)| = 1 (1292)

while only the identity matrix can be simultaneously positive definite and
orthogonal.

A unitary matrix is a complex generalization of the orthogonal matrix.
The conjugate transpose defines it: U−1 = UH . An orthogonal matrix is
simply a real unitary matrix.

B.5.2 Reflection

A matrix for pointwise reflection is defined by imposing symmetry upon
the orthogonal matrix; id est, a reflection matrix is completely defined
by Q−1 = QT = Q . The reflection matrix is an orthogonal matrix,
characterized:

QT = Q , Q−1 = QT , ‖Q‖2 = 1 (1293)

The Householder matrix (§B.3.1) is an example of a symmetric orthogonal
(reflection) matrix.
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Figure 107: Gimbal : a mechanism imparting three degrees of dimensional
freedom to a Euclidean body suspended at the device’s center. Each ring is
free to rotate about one axis. (Drawing courtesy of The MathWorks Inc.)

Reflection matrices have eigenvalues equal to ±1 and so det Q=±1. It
is natural to expect a relationship between reflection and projection matrices
because all projection matrices have eigenvalues belonging to {0, 1}. In
fact, any reflection matrix Q is related to some orthogonal projector P by
[135, §1, prob.44]

Q = I − 2P (1294)

Yet P is, generally, neither orthogonal or invertible. (§E.3.2)

λ(Q) ∈ Rn , |λ(Q)| = 1 (1295)

Reflection is with respect to R(P )⊥. Matrix 2P−I represents antireflection.

Every orthogonal matrix can be expressed as the product of a rotation and
a reflection. The collection of all orthogonal matrices of particular dimension
does not form a convex set.

B.5.3 Rotation of range and rowspace

Given orthogonal matrix Q , column vectors of a matrix X are simultaneously
rotated by the product QX . In three dimensions (X∈ R3×N), the precise
meaning of rotation is best illustrated in Figure 107 where the gimbal aids
visualization of rotation achievable about the origin.
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B.5.3.0.1 Example. One axis of revolution.

Partition an n + 1-dimensional Euclidean space Rn+1 ∆
=

[

Rn

R

]

and define

an n-dimensional subspace

R ∆
= {λ∈Rn+1 | 1T λ = 0} (1296)

(a hyperplane through the origin). We want an orthogonal matrix that
rotates a list in the columns of matrix X ∈ Rn+1×N through the dihedral
angle between Rn and R : �(Rn, R)= arccos

(

1/
√

n+1
)

radians. The
vertex-description of the nonnegative orthant in Rn+1 is

{[ e1 e2 · · · en+1 ] a | a � 0} = {a � 0} ⊂ Rn+1 (1297)

Consider rotation of these vertices via orthogonal matrix

Q
∆
= [1 1√

n+1
ΞVW ]Ξ ∈ Rn+1×n+1 (1298)

where permutation matrix Ξ∈ Sn+1 is defined in (1356), and VW ∈Rn+1×n

is the orthonormal auxiliary matrix defined in §B.4.3. This particular
orthogonal matrix is selected because it rotates any point in Rn about one
axis of revolution onto R ; e.g., rotation Qen+1 aligns the last standard basis
vector with subspace normal R⊥=1, and from these two vectors we get
�(Rn, R). The rotated standard basis vectors remaining are orthonormal
spanning R . 2

Another interpretation of product QX is rotation/reflection of R(X).
Rotation of X as in QXQT is the simultaneous rotation/reflection of range
and rowspace.B.8

Proof. Any matrix can be expressed as a singular value decomposition
X = UΣW T (1195) where δ2(Σ) = Σ , R(U)⊇R(X) , and R(W )⊇R(XT ).

�

B.8The product QTAQ can be regarded as a coordinate transformation; e.g., given
linear map y =Ax : Rn→Rn and orthogonal Q , the transformation Qy = AQx is a
rotation/reflection of the range and rowspace (114) of matrix A where Qy ∈R(A) and
Qx∈R(AT ) (115).
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B.5.4 Matrix rotation

Orthogonal matrices are also employed to rotate/reflect like vectors other
matrices: [sic] [95, §12.4.1] Given orthogonal matrix Q , the product QTA

will rotate A∈Rn×n in the Euclidean sense in Rn2

because the Frobenius
norm is orthogonally invariant (§2.2.1);

‖QTA‖F =
√

tr(ATQQTA) = ‖A‖F (1299)

(likewise for AQ). Were A symmetric, such a rotation would depart from
Sn. One remedy is to instead form the product QTAQ because

‖QTAQ‖F =
√

tr(QTATQQTAQ) = ‖A‖F (1300)

Matrix A is orthogonally equivalent to B if B=STAS for some
orthogonal matrix S . Every square matrix, for example, is orthogonally
equivalent to a matrix having equal entries along the main diagonal.
[133, §2.2, prob.3]

B.5.4.1 bijection

Any product of orthogonal matrices AQ remains orthogonal. Given
any other dimensionally compatible orthogonal matrix U , the mapping
g(A)= U TAQ is a linear bijection on the domain of orthogonal matrices.
[158, §2.1]


